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NOMENCLATURE

Width of Annular Space ts; Surface temperature of inner or outer wall
of annular space
Heat-transfer area per unit axial length of duct

t Fluid bulk temperature
Specific heat of fluid

u Fluid velocity
Hydraulic equivalent diameter

a Average fluid velocity
Eigenfunction

x Dimensionless distance from inner wall of
Dimensionless heat flux, qia/kAtr annular space, Y/a
Dimensionless heat flux corresponding to £* y Distance from inner wall of annular space
Dimensionless fluid velocity, u/a z Dimensionless axial distance (4/Pe)(L/D)
Heat-transfer coefficient z Dimensionless axial distance, S(L/D)
Thermal conductivity o Fluid thermal diffusivity
Axial distance from duct inlet B Dimensionless coefficient, 4)\,/Pe
Differential operator defined by Eq. 6 At Arbitrary reference temperature difference
Normalization factor € Eddy diffusivity for heat transfer
Nusselt number, Dh/k C; x Function defined by Eq. 16
Peclét number, Di/a (; x  Function defined by Eq. 16 with g(x) =1
Prandtl number, v/o 8 Dimensionless time (4/Pe)(ﬁ1/d)
Wall heat-flux density 2] Dimensionless time, ﬁ(ﬁ’r/D)
Inner radius of annular space An Eigenvalue
Outer radius of annular space A % Least nonzero eigenvalue
Annulus radius ratio, rl/rz v Kinematic viscosity
Reynolds number, Dﬁ/v £ Dimensionless fluid temperature (t- to)/Atr
Coefficient defined by Eqs. 33a and 33c Ex Dimensionless fluid initial temperature
Cross-sectional area of duct p Fluid density
Coefficient defined by Egs. 33b and 33d T Time
Fluid temperature v Dimensionless fluid temperature for uniform

initial conditions, € - E*
Fluid temperature at duct inlet

Duct wall temperature



ENGINEERING RELATIONSHIPS FOR
TURBULENT FORCED-CONVECTION HEAT TRANSFER
IN DUCTS WITH FLUX TRANSIENTS

by

Ralph P. Stein

ABSTRACT

Engineering relationships to account for turbulent
forced-convection heat transfer in ducts during heat-flux
transients and steady floware derived. These relationships
are suggested as more accurate replacements for the simple
heat-transfer-coefficient expression tg - T = q/h currently
used in most engineering computations involving transients.
The new relationships have the form

2
TR %+ DR‘(aq+l a—q)+‘..,

s 2kB \32 [ ot

where R; and B are dimensionless coefficients depending on
Reynolds and Prandtl numbers and onduct shape. Tabulated
values of these coefficients for the circular tube, parallel-
plane duct, and pin bundle are given for wide ranges of
Reynolds and Prandtl numbers, with yemphasis on liquid
metals.

INTRODUCTION

The necessity to account for turbulent forced-convection heat trans-
fer in ducts during wall heat-flux transients occurs frequently in engineering
analysis. One of the oldest problems of this kind occurs in the design of
periodic-flow heat-exchangers (regenerators); one of the more recent oc-
curs in safety studies of liquid-metal fast-breeder nuclear reactors, where
it is required to consider incidents involving large and extremely rapid
heat-flux changes. Although the main motivation for the work reported
here is nuclear-reactor applications, with emphasis on liquid metals, the
results have more general applicability.

The traditional engineering method used to account for forced-
convection heat transfer during transients assumes that the simple heat-
transfer-coefficient relation applies, i.e., that the local heat flux at the



duct wall is directly proportional to the temperature difference between the
wall and the "bulk" of the fluid. Thus, the familiar relationship

t,-T = q/h (1)

is used in most, if not all, practical engineering analyses involving tran-
sients. In general, q, tg, and t are unknown functions of time and duct
axial distance; and h is taken equal to its fully developed steady-state
value, and is independent of time when the flow is steady.

Equation 1 serves as a coupling or boundary condition between an
appropriately simplified version of the energy equation applied to the fluid,
and heat conduction in the duct walls or its equivalent. For example, for a
duct of sufficiently simple cross section, and with no internal heat sources
within the fluid, the relationship

et 3t
cps(u 31 4 a) = Aq (2)

would be used for the fluid. In fact, the use of Eq. 1 implies the use of

Eq. 2, since together they represent a one (space)-dimensional approxima-
tion to the exact energy equation for the fluid.

For regenerators, ducts with specified time-dependent heat genera-
tion within the walls, and other similar devices, the heat-conduction equation
is also required to account for transient heat transfer within the duct walls,
thereby relating tg and q. This additional requirement results in a compli-
cated mathematical problem, which, except for certain special limiting
cases, can be solved only by numerical methods and machine computation.

If the simplifications afforded by Eqs. 1 and 2 were eliminated by direct use
of a more exact representation of the energy equation for the fluid, the nec-
essary machine computations would become cumbersome and time-consuming.

For nuclear reactors, internal heat generation in the equivalent of
the duct walls requires, in addition to the transient heat-conduction equa-
tion, introduction of appropriate neutron-kinetic expressions, which, in turn,
are influenced by important interacting temperature effects. Elimination of
the approximations implicit in the use of Eqs. 1 and 2 by direct use of a

more exact version of the energy equation for the fluid is probably imprac-
tical today.

Thus, for analyses of complex systems such as nuclear reactors,
and probably also for simpler devices such as regenerators, the use of Eq. 1
to.account for turbulent forced convection during transients offers a sim-
plicity which is necessary in the interests of computational practicability.
The potential for inaccuracies resulting from the use of Eq. 1 remains, of

:
course; concern for these inaccuracies has existed in the nuclear-reactor
field for some time . !'~*



Various analytical investigations related to more exact predictions
of convection heat transfer with wall-heat-flux transients in ducts have been
reported in the literature. All the investigations concentrate on specific
cases; most consider idealizations in which the wall heat flux or surface
temperatures are specified functions of time;’”? and a few consider cases
in which heat generation within a duct wall is specified.!"!' All these pub-
lications emphasize mathematical techniques and approximations for solu-
tions of the specific cases considered; and comparisons of results give some
information related to the accuracy of the simpler calculations based on the
use of Egs. 1 and 2. However, the information is specific to the cases con-
sidered, and definitive generalizations are not possible.

Perhaps the most recent and most detailed of these analytical in-
vestigations was performed by Gopalakrishnan,!! who treated the case of
turbulent flow through a parallel-plate duct with transient internal heat
generation within the duct walls. He developed a general computer pro-
gram based on finite-difference representations of the coupled two (space)-
dimensional energy equations for the fluid and the duct walls, and then
applied the program to various specific cases involving exponentially in-
creasing or decreasing wall heat generation. He found that for sufficiently
large time and distance from the duct inlet, h in Eq. 1 became constant,
i.e., attained an asymptotic value. He also found, however, that for suffi-
ciently rapid heat-generation transients, the asymptotic valtie of h depends
on the exponential period of the transient, and that this dependence occurred
in ranges of interest to nuclear-reactor applications. Thus, for such cases,
even when asymptotic values are obtained, the usual steady-state heat-
transfer coefficient is not correct for use in Eq. 1. Instead, an appropriate
value depends on the form of the transient, Whigh, of course, is usually not
known in advance.

In general, all the referenced investigations can be interpreted as
showing that errors resulting from the use of Eq. 1 can be quite large in
many cases of engineering interest. None of the investigations has found
potentially more accurate alternates to Eq. 1, other than the equivalent of
using a more exact version of the fluid-energy equation to replace both
Egs. 1 and 2.

Investigations emphasizing attempts to correlate transient experi-
mental data are being performed by researchers in the Soviet Union.'?
These investigations are not focused on mathematical solutions of specific
cases; rather they are based on analytical and physical reasoning which
suggests that h in Eq. 1 can be correlated empirically with experimental
data, provided additional dimensionless parameters are included with those
usually associated with nontransient convection heat transfer. For heat-
flux transients, the pertinent dimensionless parameter suggested is pro-
portional to the time rate of change of duct surface temperature.
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For example, the recent publication of Koshkin et a_l.13 gives empir-
ical correlations of turbulent gas-flow transient heat-transfer coefficients
from experiments with step changes of electrical heat generation in the
walls of a tube. The generality of these types of correlations is, of course,
uncertain; however, the experiments clearly show that h in Eq. 1 cannot be
taken equal to its steady-state value with transients of interest to the en-
gineering applications considered.

The purpose of this report is to present "improved" engineering
relationships to account for turbulent forced-convection heat transfer in
ducts during flux transients and steady flow. "Engineering relationships"
mean mathematical expressions that are sufficiently simple to allow appli-
cation to engineering analyses in which forced-convection heat transfer may
be only one of many interacting physical mechanisms. "Improved" means
a demonstrable superiority in accuracy and generality over methods cur-
rently in use.

For purposes of illustration, consider the following equation, which
applies to a circular tube:

2
= g DR, (g v
SR Pl | oy e R 3
ts h 2kB \o4 T oT (3)
If the terms represented by "+ ..." are omitted, Eq. 3 will usually account

more accurately for turbulent forced-convection heat transfer during heat-
flux transients than will Eq. 1. When the heat flux q is independent of
time 7, Eq. 3 also serves as an "improved" engineering relation for cases
with q a function of axial distance 4. Finally, when the heat flux is inde-
pendent of both time and axial distance, Eq. 3 becomes equivalent to EgTeie

Equation 3 is a specialized version of a more general expression.
The source of this expression, the approximations upon which it is based,
and its potential utility for practical engineering computations, are the
major topics of this report.

MAJOR ASSUMPTIONS

. The derivation of the general expression of which Eq. 3 is a special-
ized form is based on a joining of three mathematical techniques previously
aPplied in the literature on forced-convection heat transfer in ducts. The
first is the familiar and classic "separation-of-variables" technique for
nontransient cases, which leads to related Sturm-Liouville problems and
ar'lalytical solutions for specific cases in terms of infinite series involving
elggnfunctions. The second technique involves (1) integrating such infinite
series for cases in which the wall heat flux is treated as an arbitrary con-
tinuous function of duct axial distance; and (2) then exploiting the resultant



formulation to obtain relatively simple engineering expressions for the
general case of axially nonuniform time-independent wall heat flux.!* The
third technique, first used by Siegel® for transient plug-flow forced convec-
tion in ducts, consists of rephrasing the transient energy equation and its
appropriate boundary conditions in terms of a moving-coordinate system
(Lagrangian formulation). The combination of the second and third tech-
niques, together with observations concerning the equivalent of thermal
entrance regions, leads nearly directly to expressions like Eq. 3.

The usefulness of these three techniques requires certain assump-
tions, including negligible physical-property temperature dependence, fully
developed incompressible flow, and negligible axial heat diffusion. The duct
is considered symmetrical in the sense that only one space coordinate
normal to the duct axis is required for the mathematical formulation.
Turbulent eddy diffusivities for heat transfer must be a function of this co-
ordinate only. All these assumptions have served, for example, as the theo-
retical basis for justifying the use of Eq. 1 for steady-state heat transfer.

The usefulness of the third technique requires the assumption that
the fluid velocity distribution is uniform. This assumption is made here
as a reasonable approximation to a highly turbulent flow in a duct. However,
the proposed "improved" engineering relationships, like Eq. 3, are formu-
lated so that the assumption does not apply when the heat transfer is steady.
The utility of Eq. 2 for transients also requires the same assumption.2
As a result, the proposed engineering relationships for heat-flux transients,
which, in effect, replace Eq. 1 as alternates to use with Eq. 2, are at least
consistent with this assumption.

Previous applications of the moving-coo.rdinate system by Siegel,’
and later by Siegel and Perlmutter,’ were based on the assumption of neg-
ligible turbulent eddy diffusivities in addition to a uniform velocity distribu-
tion; i.e., they were based on a plug-flow model for the fluid. However, this
additional assumption is not necessary when the flow is steady and, accord-
ingly, is not used here.

The customary use of eddy diffusivities to represent the local diffu-
sion of heat due to turbulence involves another assumption. Eddydiffusivities
added to molecular diffusivities imply a time-averaging of turbulent fluctua-
tions. For reasonable application to transients, the time scale of the aver-
aging should be small compared to that of the transients. It is uncertain
whether this requirement will be met when fluid temperatures change sig-
nificantly in time intervals of 1 msec or less. An evaluation of this un-
certainty, which also applies to use of Eq. 1, will probably require analyses
of carefully designed experiments.
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MATHEMATICAL MODEL

In most engineering applications of Eq. 1 involving transients, q,
GooRand t are unknown quantities. Further, when q is a function of time,
it would be an unusual situation for q not to be a function of position also.
In principle, if q were known as a function of time and position, and if ini-
tial conditions could be specified, then tg and t would be related to q by
integration of the energy equation for the fluid. Thus, a potentially useful
mathematical model to study is one in which q is an arbitrary function of
both time and position, and initial conditions are sufficiently general to
cover more than a few applications of engineering interest.

Detailed considerations are limited to ducts that are symmetrical in
the sense previously described. The most general duct shape of this kind
is the annular space with different heat fluxes from both walls, represented
mathematically so that the circular tube, the infinitely wide parallel plane
duct, and an accurate approximation to the rod or pin bundle are included
as special cases. This annular space is illustrated in Fig. 1, which also
identifies some of the nomenclature to be used. Note that y, the coordinate
normal to the duct axis, is chosen as distance from the inner wall of the
annular space. This choice is more or less arbitrary, but is convenient for
including the limiting cases of circular tubes and parallel-plane ducts in
the formulation.

L —]

——3—]

D = 2a

x = y/a
} = (4/Pe)(£/D) O @ =

Fig. 1. The Generalized Annular Space

R=0 O <R<I R=1

' With the major assumptions described previously, the energy equa-
tion for the fluid can be written as

1 3 ot dt ot
nty W[(rl*’}')(d"'e) g:l =M et (4)
with the boundary conditions

= q(t,1) (5a)




and

ot
ko= L )
— e (5b)

The temperature at the duct inlet, where 4 = 0, is taken as uniform and
constant. In Eq. 4, the eddy diffusivity e and fluid velocity u are known
functions of y. As mentioned previously, however, it will be necessary

later to use the approximation u = q.

The initial condition t(y,4,0) for Eq. 4 is taken as the steady-state
solution corresponding to the time-independent heat fluxes q, = q}¥(2) and
q, = q: (). The formal mathematical solution for this case serves as the
main basis for the derivation of the proposed "improved" engineering rela-
tions to replace Eq. 1 and will be discussed in some detail. Before doing so,
however, Eq. 4 and its associated boundary, inlet, and initial conditions will
be recast into a more convenient dimensionless form.

Dimensionless distance normal to the duct axis x (0 < x < 1), dimen-
sionless axial distance z, and dimensionless time 6 are introduced. These
and other quantities are defined in the Nomenclature. The dimensionless
fluid temperature is denoted by E(x,z,8), corresponding to dimensionless
wall heat fluxes F,(z,0) and F;(z,6). The initial condition is denoted by
€(x,z,0) = E*(x,z), corresponding to time-independent heat fluxes F}(z) and
F¥(z). The dimensionless fluid velocity is denoted by g(x) = u/'ﬁ.

In addition to the above dimensionless quantities, the second-order

differential operator L is introduced for concigeness in notation. This
operator is defined by'*

L()EET(T‘I—_W( :—x{[R+(1—R)X](1+%Pr> %}, (6)

where R is the radius ratio of the annular space. The circular tube corre-
sponds to R = 0; for the parallel-plane duct, R = 1%

Finally, the linearity of Eq. 4 and its associated conditions can be
taken advantage of by defining :

§(x,z,e) = g*(x,z) + ‘#(X:Z,Q): (7)

where | is the dimensionless fluid temperature for the case F’l" = F; = 0,
i.e., for the case of initially uniform and constant fluid temperatures.

Use of the above dimensionless quantities and definitions results in
the following two related mathematical problems:



For g*(x,z), 0 2x's 1"z

LE* = g(x)E3, (8)

£*(x,0) = 0, (8a)

£5(0,2) = -Fi(2), (8b)
and

g5(l,z) = F3(2). (8c)

For §(x,z,6); 0sx<1, 220, 620:

Ly = glx)V, + ¥y 9)

¥(x,2,0) = 0, (10a)

¥(x,0,8) = 0, (10b)

v,(0,2,8) = -Gi(2,8), (10c)
and

Y(1,2,8) = Ga(2,9), (10d)
where

=TSR e e (11)

(Where appearing in the above, and later equations, the subscripts x, z,
and O denote partial differentiation with respect to these variables.)

With the heat-flux functions F; and F’i" specified, the foregoing mathe-
matical formulation determines the dimensionless fluid temperature E(x,z,8).
From g(x,z,8), the dimensionless surface temperatures

§s,1(2:6)

£(0,2,8), (12)

5an(7,8)

n

£(1,2,8), (13)

S,2

and bulk temperature

= 1
§(2,6) = 5 iR L [R+(1-R)x] g(x)E(x,2,8) dx : (14)

can also be determined. The intent here, however, is not to specify F; and
Fj. Instead, these functions are retained as arbitrary, with the requirement
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that they be continuous with continuous derivatives. It will be shown that the
surface temperatures, bulk temperature, and heat fluxes can then be related

to each other in a general way that leads to potentially useful engineering
relations of the type given by Eq. 3.

STEADY-STATE NONUNIFORM HEAT FLUX

The solution to this case corresponds to the initial condition A
as determined by solution of Eqs. 8. As will be seen, however, it also serves
as the basis for determining y(x,2,0), and hence §(x,2z,8). Accordingly, the
superscript "*" will be temporarily dropped from Egs. 8, and the solution to
the general steady-state case will be denoted by §(x,z), corresponding to
time-independent heat fluxes F,(z) and F,(z).

Formal mathematical solutions to this general case involving infinite
series of eigenfunctions have been published in various forms; for example,
in Refs. 14 and 15. The solution can be written as

—-— ® z = —
8x2) = E=) + Y Eqbohy [ [CunFi(s)+ConFy(s)le ™™™ D a5, (15)
Hneg 0
where
o 2 z
8e) = g [ RE(e)+Fae)] as, (15a)
E,(0)
Cin = IZFR N“xn, (15b)
n
2 EL1)
Con = T3R N:)\n' [fee

and the E,(x), Ap, and N, are eigenfunctions, eigenvalues, and corresponding
normalization factors associated with the appropriate Sturm-Liouville prob-
lem outlined in the appendix.

In Ref. 14, the equivalent of Eq. 15 was converted into a potentially
more useful form by successive integration by parts and rearrangement.
These manipulations of Eq. 15 resulted in the heat-flux-independent func-
tions (; x(x,2),1 = 1,2; k = 1,2,3, ..., defined by'

TThe symbol ¢; | represents the same function given by R; y in Refs. 14 and 16. In this report, the symbol
R; i is used for an alternate definition of this function, which has been found to be more convenient for
applications.



2 C; 4E
§ ol i k Z N e n(x e—)\nz' (16)
l,k )\

n=1
With these functions, Eq. 15 can be written as

@

(z akF (z)
E(x,z) - E(z kz [1 kxO) d1k ) ot Cz,k(x'o) d—?‘k]
= z z
ke k T
-{gx,ux,z)i%‘fj’—” + Gy bz d—%} (17)

It can be seen from Eq. 16 that as z ~ =, [, (x z) > 0. As a result,
the last bracketed terms of Eq. 17 become negllglble for sufficiently large
values of z, i.e., for axial distances sufficiently far from the duct inlet.
The remaining terms then represent a generalized, fully developed heat-
transfer condition in the sense that any remaining z dependence occurs
only because of the flux distribution and is easily accounted for once the
functions gi,k(x,O), which are independent of z and the flux distributions,
are known.

In most engineering applications, only the surface temperatures
€(0,2) and €(1,z) are required, and only the fully developed heat-transfer
condition in the sense described above need be considered. As a result,
values of the functions (; k(x 0)at x = 0 and x = 1 were given special
significance in Refs. 14 and 16.Y In fact, it is easily shown that

€1,0(0,0) = 2(Nu; ;)™, (18a)

C2,0(0,0) = 2[(Nuy2)™! - (Nuy ;)] (18b)

€2,0(1.0) = 2(Nu, )7, (18¢)
and

C1o(1,0) = 2[(Nuz,2)™" - (Nuz,)™'], (18d)

where the Nuj ,j represent fully developed uniform-flux Nusselt numbers,
With i = 1 referring to the inner wall of the annular space, and i = 2 re-
ferring to the outer wall., The subscript j = 1 denotes the case of a nonzero
heat flux from the "i" wall only, and j = 2 denotes the case of equal heat

Tsee footnote on previous page.
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fluxes from both walls. For the circular tube, F, = 0 and only the ¢, x(1,0)
are needed. For the parallel-plane duct, symmetry requires that s 1;(0,0) =
€;,x(1,0) and ¢, 1 (1,0) = ¢, 1(0,0). ' ¢

The relationships given by Egs. 18 are particularly important, since
the Nusselt numbers Nu; j are those easiest to determine by experiment and
include those usually correlated by available empirical equations for forced
convection in ducts.

With § replaced by €%, and F; replaced by FT, Eq. 17 can be used to
determine §* in Eq. 6. It will now be shown that Eq. 17 can also be used to
determine { in Eq. 6.

TRANSIENT HEAT FLUXES

The solution to this general case requires the dimensionless tran-
sient temperature functions §(x,z,8), as defined by Eq. 7. This function is
determined by solution of the mathematical problem specified by Egs. 9
and 10. At this point in the analysis the assumption u ~ @ (i.e., g(x) = 1) is
made as a reasonable approximation to highly turbulent flows. For then,
each element of fluid moves at the same speed, and by a change to a moving
coordinate system, Eqs. 9 and 10 can be made to correspond to Egs. 8.

In effect, either z or O can be eliminated as an independent variable in the
differential equation and its boundary conditions. As a result, Eq. 17, when
properly interpreted, can be used to represent y(x,z,6).

At present, the errors introduced by thig uniform-fluid-velocity
approximation are uncertain. However, they are expected to be small,
especially with liquid metals, for which thermal resistances are not local-
ized near the duct walls as they are with high-Prandtl-number fluids. Also,
as mentioned previously, this approximation is required to justify the tran-
sient one-dimensional-energy equation (e.g., Eq. Z);2 for example, by simple
integration of Eq. 4 with respect to y. Since the major objective here is to
propose potentially more accurate alternates to Eq. 1 for use with the one-
dimensional-energy equation, the approximation is at least consistent with
this usage.

The change to a moving-coordinate system follows the publications of
Siegel® and Siegel and Perlmutter.’” The reader is referred to these publi-
cations for further descriptive details.

For 6 < z, the independent variable z is replaced by z = z, + 6.
The new variable, z,, represents the dimensionless axial location of a
"slice" of fluid at the time the transient begins, i.e., at 6 = 0. For a par-
ticular value of zy, z = z, + 6 represents a moving coordinate following
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a particular "slice" of fluid as it moves through the duct. The change in
independent variables from (x,2,8) to (x,0,2,), when applied to Eqs. 9 and 10
with g(x) = 1, results in

Ly~ = ¥y (19)

¥~ (x,0) = 0, (20a)

¥y (0,8) = -Gy (6), (20Db)
and

¥7(1,8) = G27(8), (20c)

where z, is an arbitrary parameter.

_The superscript minus sign is used to emphasize that the above
equations apply only when 6 < z. Further, since z, serves only as an arbi-
trary parameter held constant for the derivatives of Eq. 19, there are only
two truly independent variables: x and 6. In effect, z has been eliminated
as an independent variable; and to emphasize this, ¥(x,z,0) = y(x,z,+6, 8) is
represented by §~(x,6), and G;(2z,6) = Gj(zo+6, 6) is represented by G; ().
As a result, the correspondence of Eqgs. 19 and 20, to Eqs. 8 with g(x) = 1
is easily recognized when §* is replaced by §~, Fr is replaced by G;~, and
z is replaced by 6. Thus, the solution for §~(x,6) can be obtained from
Eq. 17 as

: — = g ak
V7 (x,8) - y(0) = x,0) — G, (© 1 (x%,0) — G, (8
)- ¥ (8) kzo[g"k( ) S GO+ Ga0) S z<)]

s d i , e
= [gl,k(x!e) P G,7(0) + gz’k(X'e)d_ek G (0)], (21)

with z = Zo+9,GSz, and

— C]
y7(8) = : f [RG1™(s) + G27(s)] ds. (22)
)

BEER

The primes attached to the functions Ci,j signify that they should be computed

with g(x) = 1 (see Eq. 16 and the appendix) in order for Eq. 21 to be an exact
solution for Eqs. 19 and 20, ;

Equation 21 can be rewritten in terms of the independent variables z
;md. ) ]:')Y evaluating the derivatives dei-/dek, noting that these are total
€rivatives for constant zy. It is easily shown that
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de 26 dz

and
2 - 2 2 2
d*G; _aGi“aGiWLac,i
ae® = a3¢? 363z oA

and that in general, using operator notation,

k

" e e k
S T O e O = ik
dok = (ae + Bz) iy = 1B, (23)

Thus, Eq. 21 can be rephrased as

¥(x,2,8) - ¥(z,8) = z [g;,k(x,O)DkGl(z,G) + Cz',k(x,O)Dsz(z,e)]
k=o
- [eh 12 0)D%G (20,0) + € 1(x,8)D G (20,0) . (24)

with zy = z - 82 0.

For 6 = z, the independent variable 6 is replaced by 86 = 6y + z. The
new variable, 8,, represents the dimensionless time when the "slice" of
fluid at axial position z was at the duct inlet. The procedure is the same
as that described above for 6 < z, except that 8, now serves as an arbitrary

parameter and the change in independent variables is from (x,z,0) to (x,z,6,).

Equations 9 and 10 with g(x) = 1 become

14} i Bl (25)

¥t(x,0) = 0, (26a)

v, t0.2) = g (=), (26b)
and

.t (le) = G (z), (26c)

where 6, is an arbitrary parameter, with
¥(x,2,8) = ¥(x,2,60+2) = ¥*(x,2),

and
Gi(2,6) = Gi(z, 8o+2) = G;¥(2).

1)
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The form of solution corresponding to Eqs. 21 and 22 can be ob-
tained by simply replacing 6 by z in these equations, noting, of course,
that ® = By + z and 6 2 z. The form of solution corresponding to Eq. 24
then follows by evaluating the total derivatives dei+/dz+ in terms of the
independent variables z and 6. Thus,

©

Y2,8) - T2.0) = 3 [l xx,0)D5Ga(2,8) + €} 1(x,0)DKGa(2,8)
k=0
- [¢1 x6x2I05G1 (0,80) + €3 160,2)D5G2(0,8,)] (27)

with 6, = 6 - z 2 0.

Equations 24 and 27 are more general equivalents of the relation-
ships derived by Siegel and Perlmutter? for flux transients with plug flow
in parallel-plane ducts. These equations differ in form primarily because
of the use of the functions C{,k' They are more general, because turbulent
diffusivities are allowed to depend on x, and duct shape is more inclusive.
With the functions Cil,k known, which requires knowledge of the required
eigenfunctions and eigenvalues from the appropriate Sturm-Liouville prob-
lem (see appendix), Eqs. 24 and 27 can be applied to obtain solutions for
various cases with G;(z,8) specified. As mentioned previously, however,
solutions for specified heat flux cases are not the objective here. Instead,

Eqgs. 24 and 25 will now be used to infer potentially useful engineering
relationships.

ENGINEERING RELATIONSHIPS FOR FLUX TRANSIENTS

The solution for §*(x,z),as given by Eq. 17 with € = €% and F; = F?,
can now be added to the solution for {(x,z,0), as given by Eqs. 24 and 27.
According to Eq. 7, this addition of solutions results in generalized expres-
sions for E(x,z,8) for the two regions 6 < z and 6 2 z. But Eqs. 24 and 27
require the approximation u ~ q (i.e., g(x) = 1), and Eq. 17 does not. As a
result, the functions gi’,k and Ci Tk need not be equivalent. If these functions
are not equal, then the expressions for €(x,z,0) will involve terms like

1
Ci,kF_i (e Ci,k) F’f; clearly, equality of these functions is desirable
for simplicity.

. The functions g{,k and (i k can be made equivalent by using the
uniform-fluid-velocity approximation for both £* and y. Although errors
ul1tr<.)duced by this approximation are expected to be small, especially for
liquid metals, they can be completely suppressed for conditions in which
i(X»Z,e) eventually becomes time-independent. This can be accomplished

Yy not using the uniform fluid velocity for (; x and then simply taking
i,k = Cj k. This is the approach adopted here.



For sufficiently large values of 6, the last bracketed terms of Eq. 24
become negligibly small. Similarly, for sufficiently large values of z, the
equivalent terms in Eq. 27 also become negligibly small. As a result, when
both 6 and z are sufficiently large, Eqs. 24 and 27 are the same, and the
parameters z, and 6, need not be considered. This is a further generaliza-
tion of the fully developed heat-transfer condition discussed previously with
respect to Eq. 17, but applied now to transient as well as nonuniform heat
fluxes. Thus, for Ci,k = Ci,k and for both z and 6 sufficiently large, the
solution for §(x,z,0) can be written

§(x,2,0) - £(2,8) = » (1 (x,0)DKFy(z,8) + €, k(x,0)DKF,(2,6).  (28)
k=0

The dimensionless axial distance z and dimensionless time 6 have
been defined in a way convenient for discussing the derivation of Eq. 28.
The definitions of the functions gi,k that result, however, are relatively in-
convenient for applications; in particular, they depend heavily on the index k.
Except for sign, the k dependence can be nearly removed by redefining
dimensionless distance and time by

Z = \z = B(4/D) (29a)
and

@ = 1,0 = B(@r/D), (29b)
with

B = 4),/Pe, > (30)

where ), is the least nonzero eigenvalue from the appropriate Sturm-
Liouville problem (see appendix). When the F; in Eq. 28 are considered to
be functions of Z and ©, rather than z and 6, the functions Ci,k are, in
effect, multiplied by )\]l‘.

Equation 28 is now specialized for the surface temperatures E(0,z,8)
and §(l,z,6), and rewritten in a more convenient dimensional form, using
Egs. 18 and the new variables Z and 6. For this purpose, Tg ; is used to
represent the surface temperature of either the inner (i*="1)loxr outer (i =2)
wall of the annular space. Also used are the fully developed, uniform-heat-
flux heat-transfer coefficients hj j, corresponding to the Nusselt numbers
of Eqs. 18 and new important coefficients denoted by Rj x and 5j x. With the
deviative operator DX defined with respect to Z and ©, the specialized form
of Eq. 28 can be written as

T™Is

Ry, kD q; + Sy 1D qj, e
1

D
2k
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with the understanding that when i = 1,j =2 andwheni=2,j = 1 Fal

clarity, Dkq is written out below for k = 1,

Foniks=1ls
3o ie ARy oAk
D=3z %8

D |dq 1

= - ——+_

B[BL i
For k.= 2;

3 3?2
Dkq— qz q

7 VALC)

Yor k = 3:
k d%q d3q
Dq = — +3 ——
2 323 3720

3 3
N (9)[a_q+z
B/ a2 1

and 3,
]' (32a)
q
3%0
2 1 a2
aal,aq = (32b)
[ T
d°q d3q
22236°% 203
3 5 5
alq 5 g - L+ —-ia 'a—ci] (32¢)
94 oT u 943rT 3 dT

The R; ) and S; | are dimensionless coefficients corresponding to the
special values of the functions (; . at x = 0 and x = l; in particular,

k

Rk =M Ql,k(O,O),
k

Si,k = M€, k(1,0),

R g
Rz!k % )‘l gz,k(lvo),

and
J3
Sl,k =B gz,k(()’o)’

= RSl,k.

(33a)
(33b)

(331c)

(33d)

(33e)

These coefficients and B are functions of only Reynolds (or Peclet) and
Prandt] numbers, and of duct shape. For sufficient large values of k, their
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absolute values become independent of k. Also, the R; x are negative for
odd values of k and positive for even values of Kk, wh11e the S; ) are positive
for odd values of k and negative for even values of k.

Equation 31, with the infinite summation truncated at k = 1 or 2, is
suggested as an "improved" engineering relationship to account for forced-
convection heat transfer with heat-flux transients and steady flow. Use of
Egq. 31 truncated at k > 2 is not recommended, unless the q;(¢,7) are as-
sumed to be known; at present, the resulting complications appear to be too
severe to warrant application to practical engineering computations. Instead,
higher-ordered truncated forms of Eq. 31 are suggested as a means of test-
ing accuracy after q;(4,7) is determined with k = 1 or 2.

Equation 31, with the summation term suitably truncated, which is
suggested as a replacement for Eq. 1, is to be used with a corresponding
version of the one (space)-dimensional-energy equation for the fluid. This
energy equation can be written as

s(z B R
cp 31t 37) T AG Tt A (34)

which is a more general form of Eq. 2, with Aj representing the heat-
transfer area per unit duct length for wall "i."

ENGINEERING RELATIONSHIPS FOR
PARTICULAR DUCT SHAPES

Applications of Eq. 31 require specialization to the particular duct
shape of interest, with corresponding values of the coefficients B, Rj j, and
Si,k- In addition to duct shape, these coefficients are functions of Re:ynolds
and Prandtl numbers. Values of these coefficients over a wide range of
Reynolds and Prandtl numbers have been computed for the circular tube,
parallel plane duct, and an approximation of a pin or rod bundle. The ap-
proximation is the often-used model that considers each pin to be surrounded
by an equivalent annular space, with velocities and eddy diffusivities corre-
sponding to a zero-shear condition at a fictitious outer wall. To compute
these coefficients, the turbulent velocity g(x) and eddy-diffusivity distribu-
tion e(x) must be determined first.

Computations of g(x) and e(x) were based on the von Kdrman-
Martinelli universal-velocity-distribution formulas, with eddy diffusivities
for heat transfer equal to those for momentum transfer and uniform at their
maximum values in the central regions of the duct. The necessary eigen-
values and eigenfunctions were computed by numerical solution of the appro-
priate Sturm-Liouville problem, using a general computer programdeveloped



24

for such applications.” Eigenvalues and eigenfunctions were also computed
for comparison with values obtained by others,'®!? who used different
methods for obtaining g(x) and e(x), and different numerical procedures.
These comparisons were very favorable, indicating, for example, that the
use of other methods for computing g(x) and ¢(x) will have only a minor

effect on the coefficients B, Ri,k’ and Si,k'

Circular Tube

Since a circular tube has only one wall, the subscripts i and j in
Eq. 31 are unnecessary. Thus, tgj = tg q; = q; qj = 0; hj ) = g It e = (8
and Eq. 31 can be written as

©
2 D
ts't:g+"_'szDkq (35a)
h 2k
=1
2
= WO o
i g e ol (35b)

Note that Eqs. 35 identify the source of Eq. 3, and reduce to Eq. 1 when

q is independent of 4 and 7. Values of the coefficients B and Ry are given
in Table I. The fully-developed uniform-heat-flux heat-transfer coefficient
h can be obtained from available empirical correlations,?%?!

TABLE I. Values of Coefficients for Circular Tube

Re Pr B -R, R, -R;

10* 0.00316 1.942 0.164 0.149 0.145
0.01 0.727 0.146 0.131 0.128
0.0316 0.343 0.110 0.978 0.949
1.0 0.166 0.0104 0.00900 0.00862

3.16 x 10* 0.00316 0.706 0.147 0.133 0.130

0.01 0.319 ORI 13 0.102 0.0992
0.0316 0.195 0.0674 0.0602 0.0583
1.0 0.138 0.00368 0.00327 0.00315

10° 0.00316 0.302 oL 0.106 0.103
0.01 0.178 0.0722 0.0648 0.0628
0.0316 0.138 0.0334 0.0299 0.0289
1.0 0.119 0.00135 0.00120 0.00116

3.16 x 10° 0.00316 0.165 0.0764 0.0683 0.0668
0.01 0.124 0.0364 0.0326 0.0316
0.0316 0.112 0.0138 0.0124 0.0120
1.0 0.106 0.000482 0.000432 0.000417
6 5

10 0.00316 0.114 0.0392 0.0352 0.0341
0.01 0.101 0.0151 0.0136 0.0131
0.0316 0.0968 0.00516 0.00463 0.00448
1.0 0.0949 0.000169 0.000152 0.000147




Parall el-plane Duct

The two walls for this case are geometrically equivalent. As
aresult, R 1 = Ry = Ryi S; k= S = Sy = heyy = his e = hepe
hz; and Eq. 31 can be written as

q. =8 q. D &®
iy R J il
t. s -t = —— e Py
2 by s hz 2k Z (RkD s qJ) e
k=1
gidiet d4iq A i DRy aﬁ)f i 08y , D) an+1 3g; -
h h, 2kB 2 = Gl 2kp \ 24 o :

(36b)

When q, and q are independent of £ and 7, Egs. 36 reduce to the more
accurate equivalents of Eq. 1 given in Refs. 14 and 16. Values of the co-
efficients B, Ry, and Sy are listed in Table II. Recall that h; and h, repre-
sent fully-developed uniform-heat-flux heat-transfer coefficients, with h;
corresponding to the case of g; ;( 0, q. = 0, and h; corresponding to the
case of q; = qj- Values of h; and h, can be obtained from available

. 2
correlations.?%?!
TABLE II. Values of Coefficients for Parallel-plane Duct
Re Pr B -R, R; -R; S, -S; S;
10* 0.00316 1.483 0.196 0.183 0.180 0.168 0.176 0.178
0.01 0.518 0.179 0.167 05164 053 0.160 0.162
0.0316 0.213 0.141 0.130 0.128 0.119 0.125 0.127
1 0.0757 0.0163 0.0138 0.0133 0.0119 0.0128 0.0130
3.16 x 10*  0.00316  0.492 0.187 05174 0.171 0.160 0.167 0.170
0.01 0.196 0.151 0.140 0.138 0.128 0.135 0.136
0.0316 0.102 0.0950 0.0873 0.0857 0.0794 0.0835 0.0847
1 0.0601 0.00603 0.00522 0.00508 0.00461 0.00490 0.00499
10° 0.00316 0.185 () 1) 0.147 0.145 0.135 0.142 0.143
0.01 0.0931 0.103 0.0952 0.0953 0.0868 0.0911 0.0924
0.0316 0.0639 0.0501 0.0455 0.0446 0.0411 0.0433 0.0440
1 0.0507 0.00221 0.00194 0.00189 0.00172 0.00182 0.00186
3.16 x 10° 0.00316 0.0865 0.111 0.102 0.100 0.0930 0.0976 0.0990
0.01 0.0576  0.0552 0.0503 0.0492 0.0454 0.0478 0.0486
0.0316 0.0484 0.0218 0.0196 0.0191 0.0175 0.0185 0.0189
1 0.0443 0.000804 0.000705 0.000686 0.000623 0.000662 0.000675
10° 0.00316  0.0527 0.0599 0.0546 0.0535 0.0494 0.0521 0.0529
0.01 0.0436 0.0242 0.0217 0.0212 0.0194 0.0205 0.0209
0.0316 0.0407 0.00850 0.00753 0.00734 0.00669 0.00710 0.00723
1 0.0394 0.000287 0.000251 0.000244 0.000222 0.000236  0.000240

Pin or Rod Bundle

Since circumferential variations of temperature and heat flux are to
be expected in a pin bundle, and since such variations were not considered

25
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in the derivation of Eq. 31, the surface temperature, wall heat flux, and
fully developed heat-transfer coefficients that appear in this equation must

be considered as circumferential average values.
also to current usage of Egs. 1 and 2 for pin or rod bundles.

This, of course, applies

When heat fluxes from adjacent pins are equal, Eq. 31 becomes
equivalent in form to Eqgs. 35 for the circular tube. Values of the coeffi-
These coefficients were computed
for pitch-to-diameter ratios of 1.1, 1.3, and 1.5; they were found to be

cients B and Ry are given in Table III.

essentially independent of the ratios in this range.

However, the model used

to approximate the pin or rod bundle®! is not considered to be very accurate
for computing average heat-transfer coefficients when pitch-to-diameter

ratios are less than 1.3.
pected for the coefficients B and Ry.

As a result, similar inaccuracies are to be ex-

TABLE III. Values of Coefficients for Pin Bundles
Having Pitch-to-Diameter Ratios of 1.1 to 1.5
Re 1257 ] -R, R, -Rs
10* 0.00316 2.804 0.181 0.169 0.167
0.0l 0977 0.163 0.153 0aLsS T
0.0316 0.400 0.125 0.117 04115,
1.0 0.137 0.0106 0.00985 0.00967
3.16 x 10* 0.00316 0.938 0.172 0.162 0.159
0.01 0.371 0.136 0.127 0.126
0.0316 0.192 0.0816 0.0762 0.0751
1.0 0.110 0.00429 0.00398 0.00391
10° 0.00316 0.354 0.144 (0 1R 0.133
0.01 0.176 0.0897 0.0838 0.0826
0.0316 0.119 0.0408 0.0381 0.0374
1.0 0.0929 0.00160 0.00149 0.00146
3.16 x 10° 0.00316 0.164 0.0968 0.0905 0.0891
0.01 0.108 0.0454 0.0423 0.0416
0.0316 0.0895 0.0169 0.0157, 0.0154
1.0 0.0811 0.000580 0.000538 0.000528
10 0.00316 0.0990 0.0496 0.0463 0.0455
0.01 0.0808 0.0188 0.0174 0.0171
0.0316 0.0749 0.00633 0.00587 0.00577
1 (1) 0.0722 0.000206 0.000191 0.000187

ol Values of the fully developed, uniform-heat-flux heat-transfer co-
efficient can be obtained from available empirical correlations.?!

of thes
for ex

CONCLUDING REMARKS

: ample, the requirement t
tion that u =~ 3 to justify use of

The deriv.ation of Eq. 31 is based on a variety of assumptions. Most
€ assumptions apply also to Eq. 1 as used in applications; including,
hat z be "sufficiently large" and the assump-

the one (space)-dimensional-energy equation



for the fluid, i.e., Eq. 2 or 34. Equation 31 accounts for axially nonuniform
and transient wall heat fluxes; Eq. 1 does not. Equation 31 assumes that 6
is "sufficiently large," and applications require truncation of the summation
term; also, Eq. 31 is based on the approximation ('(x,z) = ((x,z).

The total effect of these assumptions on accuracy of predictions
probably cannot be determined in a general quantitative manner. However,
a variety of comparative computations for specific cases have been per-
formed. These computations compared predictions, using Eq. 1 and trun-
cated forms of Eq. 31, with the results of calculations based on models that
do not use the most critical of these assumptions. For the cases considered,
use of Eq. 31, truncated at k = 1, usually resulted in improvements in ac-
curacy, compared to use of Eq. 1; and use of Eq. 31, truncated at k = 2,
always resulted in improvements in accuracy. For conditions of interest to
liquid-metal-cooled fast-breeder-reactor safety studies, significant im-
provements in accuracy appear to result only for extremely rapid transients,
e.g., exponential heat-flux increases with exponential periods in the milli-
second range. Further comparative computations of this kind are continuing,
with emphasis on cases of interest to nuclear-reactor safety studies in
general.

There is an interesting correspondence between the computed re-
sults obtained by Gopalakrishna.nll and Egs. 35 and 36. Recall that
Gopalakrishnan treated cases of exponentially increasing heat genera-
tion within the duct walls. He found that for sufficiently large time, the
"actual" heat-transfer coefficient--i.e., q/(ts -t)--became independent of
time, and that for sufficiently small exponential periods, it was significantly
larger than the corresponding fully developed nontransient value. He also
found that the "actual" heat-transfer coefficient, when expressed as a
Nusselt number, could be treated as a function of Reynolds and Prandtl
numbers, and of the dimensionless quantity DZ/aP, where P is the expo-
nential period.

With exponentially increasing heat generation, the heat flux to the
fluid will eventually become proportional to the heat generation; i.e.,
q ~ e™/P. Thus by neglecting the space dependence of q and letting h' de-
note the "actual" heat-transfer coefficient, Eq. 35b can be rearranged and
written

h 1 {NuR, (DZ)
L L PR 37
Y * z( Peﬁ) el (37)

where Nu represents the fully developed uniform-heat-flux Nusselt number.
Note that Pe = RePr; Nu, R;, and B are functions only of Re and Pr; and
R, is negative. Equation 37 predicts all the effects found by Gopalakrishnan,
as summarized in the preceding paragraph.

27
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APPENDIX

The Related Sturm-Liouville Problem

The Sturm-Liouville problem which defines the eigenfunctions,
eigenvalues, and other quantities for Eq. 15 can be written as

LE,(x) + Ang(x)Ep(x) = O, 0, = =il (A.1)
with

L)) = =0 (A.2)

The differential operator L is defined by Eq. 6, and the primes

denote differentiation with respect to x. The normalization factor N, is
given by

N, = 3 i m j; [R+(1-R) x] g(x)EZ (x) dx. (A.3)

The Expansion Coefficients C; ,

The C; , (i = 1 or 2) that appear in Eq. 15 are expansion coefficients
for the generalized Fourier expansions of the functions V;(x). These func-
tions are defined by

LVitx) = T 5 ebx) (8.4)
with

vi(0) = -1, (A.5a)
and

vi(l) = o; (A.5Db)
and by

LVa(x) = iR A (A.6)
with

Va(0) = o, _ (A.7a)
and

<}
N -
=
=
"
=

(A.7b)



The Vj(x) are actually dimensionless fluid temperature distributions for
fully developed heat transfer in an internally heated (i = 1), or externally
heated (i = 2) annular space, with axially uniform heat flux. The expansion
coefficients are given by

1
8 i (I—Hi)—Nnj; [R+(1-R)x] g(x)Eq(x)Vi(x) dx (A.8)
Ep(0
= lsz N i for 1 =1 (A.9a)
E_(1
= - iR N“i N 2 (A.9b)
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